MEDINFO 2001

V. Patel et a. (Eds)

Amsterdam: 10S Press

© 2001 IMIA. All rights reserved

GALEN Ten Years On: Tasks and Supporting Tools

Jeremy Roger s, Angus Roberts?, Danny Solomon?, Egbert van der Haring®
Christopher Wroe, Pieter Zanstra®, Alan Rector?®

aMedical Informatics Group, University of Manchester, UK & "University of NijmegenNetherlands

Abstract

The GALEN technology has matured over more than a
decade of use. We describe a set of software tools and
associated methodologies that together are supporting
ontological engineering in a production, rather than a
research setting.

Keywords:

Integrated Advanced Information Management Systems,
Software Design, Classification, Terminology

Introduction

Medical terminology is recognised as one of the
foundational resources n if our hopes for healthcare
computing are to be real iﬁ[}. Traditional terminologies,
optimised for direct human use, inherently constrain our
ability to recruit computers to deliver our hopes for
extensive data analysis, sharing and re-use. New kinds of
terminology, designed for computation, are required.

One approach to a solution has been by gradual evolution
of those terminologies originally designed for human use
21[RI he GALEN program, by contrast, proposed a
paradigm shift [replace static look-up terminologies
with a Common Reference Model and an automatic
classification inference engine, in a Terminology Server.

Sophisticated tools support the building and maintenance of
the GALEN resources, and these have now matured to the
point where they are used in production as well as research
environments. The range of these tools illustrates both the
power and the complexity of building sophisticated
terminological resources.

Most of the tools and methods have been described
individually in previous papers. This paper gives an
overview of the entire process. An outline chronology of
the challenges that motivated the overall development
programme is also presented.

Figure 1 summarises diagrammatically how the tools and
methodologies interrelate. The various knowledge bases are
shown, linked by arrows representing the broad knowledge
management processes that interrelate them. These arrows

256

pass through symbols representing the software tools that
implement or facilitate the knowledge management.

Four main activity streams are indicated in the diagram, and
discussed in this paper:

e GRAIL Authoring: constructing the central core of a
common reference model

e Authoring in Intermediate Representation
(Intermediate Representation): linking external
knowledge to the common reference model

e Quality assurance of all involved knowledge bases

« Deélivering the result; localising and tailoring the
common reference model to provide specific
applications with what they need

A fifth activity discussed runs orthogonally to the other four
and is not evident in the diagram:

e Collaborative working on all activities
GRAIL Authoring: The KnoME

History: The common reference model (Common
Reference Model) (e s a formal model within which
concepts may be derined, described and automatically
classified according to formal criteria for equivalence and
subsumption.

Initial implementations of the Common Reference Model
authoring environment were closely coupled with the
inference engine. An early priority was to re-implement the
authoring environment as a true client application — the
Knowledge Management Environment (KnoME) —
communicating with a terminology server engine through a
common client APLJI9]. This architecture allowed different
server and compiler client applications to be developed,
substituted and compared. This in turn motivated
extensions to and clarifications of the specification of all
components. The resulting separation enables us to take
advantage of more powerful component implementations as
they arise.

The KnoME supports al the activities in the ‘GRAIL
Authoring’ area of figure 1, as well as some QA activities.
It is composed of several tools, centred around a GRAIL
editor and a browser for the internal form:

http://www.cs.man.ac.uk/mig
http://www.ehm.kun.nl/mi/

Chapter 4: Knowledge Representation

|

XML II4— -{::}- Per spectives
Forms

WCISA
L anguage II< Langauges™',
Annotations Annotator &, &

&~

Machine Processing
Manual Error detection

Data or
Other resource

Manual Authoring

i Descriptor ~ Link =
Authoring | Manage Mamger AUthoring
Compiler Terminolo i S —_— - s
GRAIL (£ JCR'= - Ao compie > , R
Reference M odel Dissection

Compiler Error
Browser

Conformance

1
! Browser
& Editor

Model Structure;
Browser

IR
Dissection
Library

&0

Descriptors Links

DOPAMINE: A

A A
A I
- T4 |
GOL {::} 1
. '.. I
Modd A 1 :}SPET
o .
Transform|
Checker {:} Tool >\ Configuration
v ’ {t} \ Manager
. . 1
Error Dﬁdg \\ 1
t & Ommission —’#{::} I \ 1
Reports ttor 1 \ 1
1
\\ v
. I External Data IR Config
Compiled &y, :....) Hierar chy
T Dis@ection{i} Compar ator 1
Browser ™ I
: I {::}T[GGER
External | I II Termind
OpenGALEN knowledge [| [= fieiiieiecescececiestccntccnscnnccans Compiled S'Erv';r_ogy
M odel and tasks Dissections

Release

Quality Assurance

Fiaure 1: Diaarammatic reoresentation of GALEN Tools and Tasks. Shaded areas denote maior activities.

GRAIL Source Editor: The Common Reference Modd is
authored in a description logic dialect called GRAIL
Primary authoring occursin text files that are then compiled
to an internal form. In common with many description logic
tools, ‘roll-back’ or ‘undoing’ of the internal form is
technically difficult, so revisions must be recompiled from
the source files. Furthermore, GRAIL syntax demands that
concepts be defined before they are used, and so the order
of the source files is critical. Source file management is,
therefore, a critical task.

Initially the Common Reference Model sources were
divided between some 30 files. However, as it grew, the
sources became unmanageable by normal manual means:
authors could not locate code that needed changing, and
much effort was spent re-ordering source statements.

The source model editor was therefore devised as an
integrated tool organising source file subdomains and
maintaining compile order. Using this tool, the current 3Mb
of source text is maintained as some 1250 separate files.
They are presented in a uniaxial and arbitrarily deep tree
such that, for example, all sources relating to anatomical
partonomy are located in one branch and all those to

pathology in another. Other features of the source editor
include a precompiler check for syntax and statement
ordering errors, and various string searching tools that
operate across the whole source unit structure or identified
branches of it. These are used extensively to locate
statements that need editing.

Model Structure Browser: The original browser for the
compiled form of the Common Reference Model presented
everything that was known about a concept in a single
interface with multiple panes. As the model grew in
complexity the browser was reengineered: a central display
shows only a concept in its type hierarchy. Other
information, such as concept definition or constraints
operating on the concept, may be requested as additional
pop-up displays. Screen shots of these tools can be found at
[WWW.-TopthiNg.COMYKNome}

Authoring Intermediate Representation
History: authoring in GRAIL syntax istime consuming and

requires extensive training. An easier syntax and less
complex semantics were needed. The GALEN Intermediate

257

www.topthing.com/knome

Chapter 4: Knowledge Representation

Representation (Intermediate Representation) and an
associated toolset — SPET and TIGGER - for authoring and
processing Intermediate Representation ‘dissections’ were
born of this requirement

A mgjor value of the Common Reference Model is as an
index and link to other resources such as static coding
schemes or items in decision support systems and EPRS -
surgical procedure codes in GALEN-IN-USE, drug
interactions, indications, and other information in the
PRODIGY GP protocol project. The processes of
authoring application specific concepts and linking
specialised knowledge to the Common Reference model are
combined in a suite of associated tools described below.

Authoring in the Intermediate Representation: Intermediate
Representations are ‘soft’; different applications or users
may redefine them. The SPET tool facilitates an entirely
manual approach in which the meaning of rubrics from
traditional schemes, such as ICD, is declared in
Intermediate Representation. By contrast, schemes that are
already at least partially compositional — such as the UK
Clinical Terms V3 — may be automatically re-expressed
directly in Intermediate Representation syntax.

The intermediate representation greatly simplifies the work
of authoring. The trade off is that there are now three
resources to manage: the Common Reference Model source
files, the Intermediate Representation libraries, and the files
defining the transformations between them.

Intermediate Representation-Dissection Libraries: Authors
using the intermediate representation to create dissections
typically work systematically through their source schemes,
storing their work as many dissection files (e.g. one for
each chapter of the original scheme). When collected at the
centre as a ‘library of dissections' the number of files
becomes large. A dissection browser in the TIGGER
supports a rough manual indexing of the cumulative
dissection library.

Intermediate Representation- Configuration: Expressions
composed in Intermediate Representation have explicit
semantics, but are phrased using a vocabulary and structure
which is specific to the application and must be transformed
to the Common Reference Model. The TIGGER
environment defines how to transform from an intermediate
representation to the Common Reference Model.
Fashioning such transformations requires anaysis of the
Intermediate Representation as used, a task supported by
the descriptor and link manager subcomponents of
TIGGER. These perform functions such as: retrieving all
intermediate representation expressions using a specified
descriptor or link; declaration of mappings from descriptors
to other descriptors or to the Common Reference Model. .

The TIGGER toolset was devised for situations where both
a single rigid Common Reference Model target ontology
and a small number of broadly similar and related
Intermediate Representation source ontologies for a given
subdomain have aready been established but require
linking. However, the same environment has proved
valuable in supporting an iterative ‘refine and test’ work

258

cycle in the development of novel Intermediate
Representation and Common Reference Model ontologies
for new subdomains, such as a drug dictionary ontology for
the UK PRODIGY project.

Processing Intermediate Representation: the output of the
Intermediate Representation analysis is an explicitly

declared Intermediate Representation to Common
Reference Model mapping. This alows Intermediate
Representation dissections using that particular

Intermediate Representation ontology to be ‘expanded’ into
the richer Common Reference Model ontology. TIGGER
itself provides one implementation of the expansion
algorithm [[T4]]but the declared mapping information can
aso be exported as an Intermediate Representation
configuration file for use in standalone implementations of
the transformation a gorithm.

Viewing Expanded Dissections: the final result of dissection
authoring and processing is a set of concepts in the
Common Reference Model linked to identifiers for external
objects. The external object identifiers can therefore be re-
displayed in a hierarchical view that mirrors the type
hierarchy of Common Reference Model concepts they link
to. The Compiled Dissection Browser offers this
functionality; it provides a useful early quality check as
dissecting work progresses.

Checking and Quality Assurance

History: tools such as the Compiled Dissection Browser
and Model Structure Browser support only ad hoc
discovery of errors of fact in the knowledge bases.
Additional tools are required to search for, characterise and
manage errors in more systematic ways.

GRAIL Conformance Suite: The development of the
knowledge bases occurred contemporaneously with
development of the GRAIL server implementation itself.
This risked introducing spurious errors arising from
problems in the server rather than in the knowledge base. A
conformance test, intended to systematically confirm that
any new compiler/server combination behaves as
anticipated, was instituted.

Grail Query Language (GQL): Authoring the conformance
suite required an error trapping syntactic extension to
GRAIL. The GRAIL Query Language (GQL) includes
expressions that take whole GRAIL statements as an
argument, to test whether the result of evaluating the
GRAIL raises expected compiler errors. For example:

(Leg newSub Leg) shouldRaiseError.

Other GQL statements alow the automatic classification
mechanisms to be tested. Small but complex models are
built, and specific subsumption inferences that should or
should not be made are tested for. For example:

(Fracture which hasLocation Femur)
shouldSubsume
(Fracture which hasLocation

(Shaft which isStructuralComponentOf Femur).

Chapter 4: Knowledge Representation

GQL was subsequently extended to support query scripting:
other statements take sets of Common Reference Model
concepts as arguments and return defined subsets such as
all concepts that are descendants of a given concept, and
whose knowledge name also contains a certain string infix,
or that are also simultaneously descendants of another
concept. For example, the following GQL query tests for
the presence of any muscles that are also classified as parts
of the skeleton:

ComponentOfSkeleton descendents
selectEach isKindOf Muscle
size shouldBeEqualTo 0.

GQL thus offers a way to partially formalise a metamodel
of the Common Reference Model: queries can be
congtructed to detect all instances where modelling has
been authored in a particular but undesirable semantic style.

Cross Validation: Some external resources — especialy
classifications - aready incorporate a type hierarchy.
Linking the Common Reference Model to such resources
offers the possibility to cross-validate. An alternative type
hierarchy can be independently computed by reference to
the semantic properties of the Common Reference Model
objects linked to. Comparison of the two structures can
identify errors in either the Common Reference Maodel or
the original source [{5].]However, systematic comparison
by manual means alone is inefficient and error-prone. A
tool, the Hierarchy Comparator, automates the comparison
and assists with discovering the origin of and deciding what
to do with any differences detected.

Visualisation: In situations where automatic cross
validation is not possible, manual checking remains the
only option. When manually authored dissections become
individually large and detailed and collectively numerous,
the problem of checking the dissection library itself for
factual errors or omissions becomes acute. Visualisation
aids such as DOPAMIN — in which knowledge base
extracts are presented as sheets - increase the ability
of human checkers to spot such problems.

Central Error Handling: GALEN implements several
levels of indirection between sources and targets, to isolate
each from changes in the other. The overall process of
authoring and checking the knowledge bases is deliberately
iterative. As a consequence the detection, documentation
and resolution of errors becomes the main driver for that
process. Error logging, consequently, is critical. Three
separate tools currently manage error logging, but their
integration is a major goal for future development.

Delivering the model

History: The GALEN Common Reference Model aims to
be re-usable. Consequently it contains information that is
more detailed than required by any single application. In
addition to suppressing unwanted information, applications
need user-friendly presentation of that information that is
required. To achieve thisthree further tools are required..

Perspectives: A perspectiveis a set of filters and systematic
simplifications of the Common Reference Model ontology
(similar to running the Intermediate Representation to

259

GRAIL expansion algorithm in reverse) which, when
applied to the Common Reference Model as a whole,
results in a reduced view of the Common Reference Model
being visible to the outside. A set of several perspectives
applied simultaneously may produce a sufficiently
simplified and focussed view that can approximate closely
to a true de-merged application specific vocabulary. For
any given specific use or application, localising the
Common Reference Model is therefore achieved by using
an appropriate set of perspectives. Work on the perspectives
mechanisms themselves, and on the best methodology to
index sets of perspectives relevant to a specific application,
isongoing.

Delivery to Applications in XML: The ‘What can | say
about...? tool (WCISA) applies perspective sets and
generates XML specifications of sample Stuctured Data
Entry forms and form fragments. This allows full
prototyping of the mechanism to deliver the Common
Reference Model via a forms based approach to be
conducted.

Language Annotation Database: Generation of natural
language phrases for underlying Common Reference Model
expressions, in multiple languages, has been a feature of
GALEN from the beginning . Originally conceived as
functionality primarily required for final rendering to end
users, it has since become an important component of the
knowledge base checking processs many GRAIL
representations of knowledge are large and difficult to read.
Generating language directly from GRAIL expressions in
the Common Reference Model facilitates the process of
comprehending what another author has said, whether or
not both authors speak the same natura language.
However, implementing large-scale language generation
across the whole Common Reference Model requires that
each Common Reference Model concept carries one or
more lexical annotations. The Language Annotator tool
maintains an annotations database in step with successive
Common Reference Model releases.

Collaborative development

History: The development of the Common Reference
Model has always been performed by more than one author
at any one time. As the Common Reference Model became
larger and more interwoven, rigorous collaborative working
procedures have become necessary.

Clone Manager: The source unit editor has been extended
to provide a multi-author and distributed modelling
environment with full check-in/check-out and cloning of
source units. Authors working together do so via individual
remote cloned copies of a single centralised canonical
GRAIL source file store. Elements of the central model
source store may be checked-out to individual clones,
edited remotely and revised versions checked back in.
Other authors are updated automatically with revisions
whenever their clones connect with the central model. .

Release Maker: Periodically further development of the
Common Reference Model is frozen and a snapshot
external release is created. These are the sources posted on

Chapter 4: Knowledge Representation

the OpenGALEN website. The release procedure is now
encapsulated in a Release Maker tool. This includes a
number of final routine quality checks, as well as a tool to
help inspect the full audit trail and change logs in order to
prepare a more concise summary of Common Reference
Model changes since the last version.

Discussion

The description above describes and chronicles the
development of one set of linked resources and supporting
tools based on GALEN technology. These resources are
developed and used in five broad activity streams, but these
overlap and their interactions drive continuous quality
assurance. Figure 1 illustrates the existence of many

potential iterative quality assurance cycles and subcycles
within the overall workflow.

The methodology set out owes much of its complexity to
the fact that the knowledge to be represented is evolving.
These resources must change consistently to produce a
coherent integrated whole. The iterative development
methodology relies on a combination of careful detection
and analysis of unexpected behaviour together with
methods to encode and build on the lessons learnt.

Historically, data linked to the Common Reference Model
originated external to this environment — e.g. classification
centres. The environment described is supporting de novo
co-operative development of large terminologies and
ontologies. Within the PRODIGY project a new
resource — a drug ontology and populated drug index — is
being developed entirely within this environment but will
be exported as a free standing resource |19].

Future work: the collaborative GRAIL and Intermediate
Representation authoring tools are currently being
consolidated. A significant future challenge will be
addressing version control issues: at any one time multiple
versions of both the knowledge bases and of the various
software tools and engines exist. Reengineering the
underlyi rmalism and inference engine, for example to
FACT also under consideration.

Acknowledgements

The work detailed here has been funded by the EC
Framework 111 and IV programs and by the NHS Executive.

References
(1]

Cimino JJ. Desiderata for controlled medical vocabularies in
the twenty-first century. Methods Inf Med. 1998 Nov;37(4-
5):394-403

Spackman KA, Campbel KE. Compositiona concept
representation using SNOMED: Towards further
convergence of clinical terminologies. Proc AMIA Symp.
1998;:740-744

Campbell KE, Tuttle MS, Spackman KA. A "lexically-
suggested logica closure" metric for medical terminology
maturity. Proc AMIA Symp. 1998;:785-789

O'Neil M, Payne C, Read J. Read Codes Version 3: A user
led terminology. Methods Inf Med 1995;34:187-192.

Brown P, O'Neil M, Price C. Semantic definition of disorders
in Version 3 of the Read Codes. Methods Inf Med
1998;37:415-419

(2]

(3]

(4]
(5]

260

[6] Rector AL, Zanstra PE, Solomon WD, Rogers JE, Baud R,
Ceusters W, Claassen W, Kirby J, Rodrigues JM, Mori AR,
van der Haring EJ, Wagner J. Reconciling users needs and
formal requirements. issues in developing a reusable
ontology for medicine. IEEE Trans Inf Technol Biomed. 1998
Dec;2(4):229-42

Rector A, Rogers JE ,Pole P (1996) The GALEN High Level
Ontology. Fourteenth International Congress of the
European Federation for Medical Informatics, MIE-96,
Copenhagen, Denmark

Rector AL, Rogers JE. Ontological Issues in using a
Description Logic to Represent Medica Concepts: Part Il -
The GALEN High Level Schemata. Methods Inf Med 2000;

Rector AL, Solomon WD, Nowlan WA, Rush TW, Zanstra
PE, Claassen WM. Terminology Server for Medical
Language and Medical Information Systems. Methods Inf
Med 1995;34:147-157

Rector A, Bechhofer S, Goble C, Horrocks I, Nowlan W,
Solomon W. The GRAIL concept modelling language for
medical terminology. Artif Intell Med. 1997 Feb;9(2):139-71.

[11] Rogers JE., Solomon, W.D., Rector, A.L., Pole P.M.,P
Zanstra, E van der Haring. Rubrics to Dissections to GRAIL
to Classifications. Sud Health Technol Inform. 1997;43 Pt
A:241-5

[12] Rogers J, Rector A. Terminological Systems: Bridging the
Generation Gap. Proc AMIA Symp. 1997;: 610-614

[13] http://www.ehm.kun.nl/efcc/19981209/irconfig.rtf

[14] Solomon W.D., Roberts A., Rogers J.E., Wroe C.J. , Rector,
A.L. Having our cake and eating it too: How the GALEN
Intermediate Representation reconciles internal complexity
with users' requirements for appropriateness and simplicity.
Proc AMIA Symp. 2000;:819-23

[15] Rogers J.E., Price C, Rector, A.L, Solomon W.D., Smejko N.
Validating Clinical Terminology Structures. Integration and
Cross-Validation of Read Thesaurus and GALEN Proc AMIA
Symp. 1998;:845-9.

[16] C. Wroe, W.D. Solomon, A.L. Rector and JE. Rogers.
DOPAMINE - A Tool for Visudizing Clinical Properties of
Generic Drugs. Nada Lavrac, Silvia Miksch, Branko Kavsek
(eds.): The Fifth Workshop on Intelligent Data Analysis in
Medicine and Pharmacology (IDAMAP-2000), Workshop
Notes of the 14th European Conference on Artificial
Intelligence (ECAI-2000), 2000: p61-65

[17] Wagner JC, Rogers JE, Baud RH, Scherrer JR Natura
language generation of surgical procedures Int J Med Inf;
1999 Feb-Mar;53(2-3):175-92

[18] Purves I. Prodigy, a computer assisted prescribing scheme.
Interim data show that it is worth taking the scheme
further.BMJ. 1996 Dec 14;313(7071):1549.

[19] Solomon WD, Wroe CJ, Rector AL, Rogers JE, Fistein JL,
Johnson P. A reference terminology for drugs. Proc AMIA
Symp. 1999;:152-6.

[20] Horrocks 1. Using an expressive description logic: FaCT or
Fiction. In: Cohn AG, Schubert LK, Shapiro SC, editors.
Principles of Knowledge Representation and Reasoning:
Proceedings of the Sixth International Conference on
Knowledge Representation (KR 98); 1998; San Francisco,
CA: Morgan Kaufmann; 1998. p. 634-647.

Addressfor correspondence

Dr Jeremy Rogers (jeremy@cs.man.ac.uk)|

(8]

(9

(10]

mailto:jeremy@cs.man.ac.uk
www.opengalen.org

	Abstract
	Keywords:
	Integrated Advanced Information Management Systems, Software Design, Classification, Terminology
	GRAIL Authoring: The KnoME
	Authoring Intermediate Representation
	Checking and Quality Assurance
	Delivering the model
	Collaborative development
	Discussion
	Acknowledgements
	References
	
	Address for correspondence

