Published in the Proceedings of IMIA WG6, Gendway 1994

A Terminology Server for Medical Language and Madlic

Information Systems

AL Rector WD SolomoA WA Nowlar?g TW Rusi

IMedical Informatics Group, Department of ComputeieSce, University of Manchester,
Manchester, M13 9PL, UK

2Medical Products Group, Hewlett-Packard Ltd, BtjsB512 6QZ, UK

Abstract

GALEN is developing a Terminology Server to suppbé& development and integration of clinical
systems through a range of keyminological services, built around a language-independent,
re-usable, shared system of concepts - the COREImodhe focus is on supporting applications for
medical records, clinical user interfaces and céihinformation systems, but also includes systems
for natural language understanding, clinical decigsupport, management of coding and
classification schemes, and bibliographic retrievalhe Terminology Server integrates three
modules: the Concept Module which implements thé&lERormalism and manages the internal
representation of concept entities, the Multilingdadule which manages the mapping of concept
entities to natural language, and the Code Corareidiodule which manages the mapping of concept
entities to and from existing coding and classifmaschemes. The Terminology Server also
provides external referencing to concept entigegrcion between data types, and makes its services
available through a uniform applications prograngnimterface. Taken together these services
represent a new approach to the development atalisystems and the sharing of medical
knowledge.

Keywords: Terminology server, Natural language processimglifid) and classification schemes
Electronic medical records, Knowledge representatio

1. Introduction: The Idea of a ‘Terminology Server’

Clinical practice centres on the care of patiegtsitictors, nurses, and other clinicians . Medical
information should centre on the record of thaecarThere is a world-wide move towards
‘patient-centred’ information systems in which aed information gathered by health care
professionals during the process of patient cabetis used to further that care and re-used taeserv
other functions within the health care systems.

If clinical information is to be re-used and sharig basic concepts used to describe that care mus
be shared. Different specialised systems may @eganose basic concepts differently for their own
purposes, but the fundamental concepts must be contwrall applications. In terms of classic
data-modelling, we can imagine many different datalels, but the meaning of the entities in those
models— the meaning of ‘the information that gaethe boxes on the modelling diagram’ — must
be shared. Such shared systems of concepts aeasngly known as ‘ontologies’ in the database
and artificial intelligence communities.

The GALEN project is funded by the European Commission asgbéhe AIM programme.
GALEN's goal is to develop a ‘Terminology Server’'rnanage language-independent shared systems
of concepts for clinical applications. The Termogy Server will be a new type of integrating
service for heterogeneous information systems. EMlaims to demonstrate the feasibility and
usefulness of such a Terminology Server:

» To provide infrastructure support for the devehgmt and integration of clinical systems.

» To provide a flexible, extensible basis for aghig ‘coherence without uniformity’ amongst the
many different clinical information services recdr

» To serve as an accessible repository of languatgpendent medical conceptual knowledge,
and to map this repository to potentially manyetiént natural languages.

General Architecture for Languages Enclopsediashamdenclatures in Medicine. The members of the EXL
consortium are: University of Manchester (UK, Caoador), Hewlett-Packard Ltd (UK), Hopital Cantonal
Universitaire de Geneve (Switzerland), Consigliaidaale delle Ricerche (ltaly), University of Liyerol (UK),
Katholieke Universiteit Neijmegen (Netherlands) jdémsity of Linképking (Sweden), The AssociationFefnish
Local Authorities (Finland), The Finnish Techni®sdsearch Centre (Finland), GSF-Medis Institut, (Gzey),
Conser Systemi Avanzati (ltaly)

Published in the Proceedings of IMIA WG6, Gendway 1994

» To convert between existing representations aathg schemes.

» To provide dynamically generated local nomenckdwr ‘coding schemes’ which are more
comprehensive and thoroughly organised than cdrelokeas a static structure or managed
manually.

If computer systems are to play a significant rolelinical care, then formal ontologies which da:
manipulated by computer systems are essential. uMaroding systems’ or ‘controlled
vocabularies’ interpreted by human users (largalyhe basis of the natural language rubrics atthche
to the symbolic codes) are no longer sufficienthe Tifficulties of using even such massive efforts
as the Unified Medical Language System [1], SNOMHEI)2?] and the Read Codes [3] are all too
apparent. Such systems are becoming too largatage, but remain too small to contain the detail
required to meet clinical requirements. Their oigation remains too limited to support acceptable
clinical interfaces, and too rigid to support tleeigty and rapid evolution of clinical care.

To capture more detail and achieve greater orgémisthe meaning of the concepts must be captured
not just in the rubrics but in the symbolic struetiself so that it can be manipulated computaitign
Mechanisms are needed to encapsulate the resimtintsically variable descriptions into the fixed
formats used by relational databases. These mqairts have been extensively discussed
elsewhere and we shall not review them further fe&j.

Medicine is not alone in perceiving the need farsd terminology. Sharing and re-use of
‘ontologies’ is now a major growth area in manyaaref information and knowledge based systems
development [9-13] However, medicine may be unique in its scaldaitge and diverse body of
professional users and sublanguages and in its conmternational effort to share knowledge based
on extensive shared understanding of the domairtheie is not already a shared model of clinical
medicine and disease, there is a vigorous intenmaltieffort to create one, an effort largely matech

by clinical goals. GALEN is one response to thecsgl needs of supporting thesical efforts to
share knowledge and practice. Others inclufel-16],

Because of medicine’s distinctive situation, GALEKes a distinctive approach to knowledge
sharing. We shall return at the end of this papéhe relationship between our concept of a médica
Terminology Server and other knowledge sharingreffon the next section we discuss GALEN's
approach to meeting needs of the clinical commu&gction three provides a functional description
of the GALEN Terminology Server. Sections four dind discuss the architecture of the
Terminology Server and the special features of2A&EN modelling formalism — the GRAIL

Kernel — which derive from the special clinical usegments for reuse and information sharing.

The final section provides an overall discussiaruding questions of evaluation and maintenance.

2. GALEN

2.1 Fundamental proposition

The fundamental proposition of the GALEN projecthiat there is a terminological — or more
properly, a conceptual — component of clinical laage which can be usefully separated from other
aspects of medical natural language processing;nration modelling, knowledge based systems,
and user interface design. GALEN contends thatdbnceptual component can be made largely
independent of surface natural language charatitsris We suggest that this model is sufficiently
strongly shared across clinical and linguistic g®to permit the development of an ‘interlinguaZ][1
based on a single coherent COncept REference (C@RE¢I of medical concepts. We believe that
such a CORE Model of medical concepts is the apaigpreference point for developing coherent
collections of clinical applications which work tether successfully and build on each others
achievements.

Because access to the CORE Model and related iafamis a common and pervasive requirement
for many applications, GALEN aims to encapsulateas to the CORE Model and related functions
in a server — the ‘Terminology Server’. In a netlvenvironment the Terminology Server will
both mediate amongst existing systems and actemoaitory for terminology to facilitate
developing new systems. We do not claim that sudrerminology Server’ will solve all problems
of mediation amongst existing systems or of bugdew systems. Indeed, one of the primary aims
of GALEN is to modularise the overall task of builgl clinical systems. The goal of the
Terminology Server is to relieve individual apptioas of technically difficult operations involving
terminology, or conceptual knowledge of the domai@ur image is of groups of applications,

Published in the Proceedings of IMIA WG6, Gendway 1994

developers and sites co-operating to develop andtanaone or more CORE Models which they all
share and which support their joint efforts.

2.2 GRAIL

The modelling formalism in which the CORE Modebisilt is known as the GRAILGALEN
RepresentatioAnd | ntegrationL anguage) Kernel [18]. GRAIL is a compositionaliadism —
rather than having to enumerate all and only tletisecal concepts that are available, the GRAIL
modeller specifies elementary concept entities,raladions that may be used to combine them into
‘complex’ concept entities. This process can barseve, thus providing for indefinitely complex
concept entities.
GRAIL is generative and GRAIL models argparse. A GRAIL model contains only the minimum
information necessary to sanction the generatiail@ensible concept entities. An indefinitely
large number of concept entities can be inferrethfthe sanctions in the model and generated as
needed without having to store them explicitly.
GRAIL classifies composite concepts automaticafiytioe basis both of their definition and of
indefeasible statements which are conceptuallyssecg to a concept. Hence there is no need for
maintaining multiple classifications manually oreevfor specifying them in advance. Concepts
such as “congenital heart disease” can be cladsifidomatically under both congenital diseases and
heart diseases without manual intervention.
GRAIL also provides a facility for attaching ‘exisic’ information to concept entities. Extrinsic
information is information which does not affectemtity’s classification. For example, the
statement:

Aspirin extrinsically mayBeBoughtin 100mgTablets
is a representation of additional ‘real-world’ kriedge beyond what is necessarily true about Aspirin
conceptually. The well structured taxonomies inABRmodels are often useful and compact ways
to organise other extrinsic knowledge.

2.3 The Terminology Server

The Terminology Server provides an encapsulatipamd a networked applications programming
interface to, the CORE Model, the facilities praddoy the GRAIL formalism, and linguistic and
coding functionality. It provides means of refagito concept entities, asking questions of them,
and transforming them into other representatiomsh s natural language. Individual modules
within the Terminology Server handle different agpef the overall task. The Terminology Server
provides a uniform interface to the services pregidy each of these modules, as well as combining
multiple services into those useful for externgblagations. There are five major tasks that the
Terminology Server as a whole performs:
* managing external references to concept enfliReference management’) and coercion between
data types;
* implementing the GRAIL formalism, and managing thternal representation of concept
entities (implemented by the Concept Module) ;
* managing the data and functionality required &praoncept entities to natural language (and,
potentially, the inverse), (handled by the Muligual Module);
* managing the data and functionality required spraoncept entities to and from existing coding
and classification schemes (handled by the Code&simn Module);
 providing the functionality and management todiarextrinsic information (the Extrinsic
Information Module).
Section 3 provides a functional description of Teeminology Server; Section 4 provides an
overview of its architecture.
2.4 Expected Applications
The test of the Terminology Server will be whetheupports applications successfully. To be
successful it must be shown to support applicatibmth individually and, more importantly, within
an environment of heterogeneous interworking dhhicformation systems. Our goal is not an
abstract ‘pure’ representation of the essence dicakthought ; rather, the goal is a practical foo
developers of clinical information systems. Expede suggests that, within limits, ‘cleaner’,
more formal representations lead to systems whiemare flexible and extensible. However the
ultimate criteria is use in practical applicationempromises are therefore inevitable.

Published in the Proceedings of IMIA WG6, Gendway 1994

Applications should benefit from the Terminologyr& in at least four ways:
» Operations involving terminology can be delegaietside of individual applications;
» Development should be easier because it is basedisting ontologies and, increasingly,
re-uses other work which uses those ontologies.
» Communication with other applications using thared ontology should be possible.
* Many of the tasks of updating the system as neweldpments appear should be easier, because
much of this work will be done by those maintainthg CORE Model. (There is, of course,
the converse obligation to perform regressionngsithen there are major changes to the CORE
Model or other aspects of the Terminology Server.)
GALEN itself includes experimental applicationsngsthe Terminology Server for electronic
medical records, decision support systems, claasifin management and bibliographic retrieval.
Other evaluations are being undertaken throughlsotition with other projects. The results of
these experiments will be reported on separatethiggsmature. More broadly, we expect to see at
least six families of applications make use of @_EN Terminology Server and CORE Model:
* Medical records, clinical user interfaces andicll information systems
* Natural language understanding systems.
 Clinical decision support systems
* Management of, and conversion amongst, codingkasdification schemes
» Bibliographic retrieval indexing
» Retrieval of clinical information, intelligent guying, research, and epidemiological analysis.

3. A Functional Description of the Terminology Serer

The Terminology Server provides services for apgilims. In this section we first describe the
patterns of functions and types of data handlethbyerminology server. We then describe the kinds
of question that may be asked.

3.1 Modes of Use and Types of Data
3.1.1. Modes of Use
The GALEN Terminology Server is potentially usedwo different ways:
» To support operational systems at run time wjthagic interpretation and encapsulation of
codes, natural language expressions, and references

» To support the development and maintenance ¢ésysby providing a repository of concepts
and terms and a means of extending this repostangrently and co-operatively.

When used to support operational systems, the Tietagy Server must help applications in their
interactions with end-users, and will primarilydsked questions. When used in development it
must support editing and knowledge acquisition @ognes in their interaction with knowledge
engineers and other specialised users, and wijigetly be told new information. The facilitiesdan
ergonomics of the two situations are markedly deife. Whether they can be achieved within a
single framework remains to be seen.
When used with operational systems, the TerminoBgyer will be an important part of a
‘mediation service’ to assist in access to exishaterogeneous databases. However, the larger
payoff should be the use of the Terminology Seagea repository for concepts to enable the
development of groups of coherent systems whichaaak together and build on each other
cumulatively. More importantly, it should providemeans of maintaining and updating such
groups of systems coherently as new informationreavad concepts need to be incorporated.
3.1.2. Terminology Server Requests
A typical pattern of interaction by an applicatiovhether as part of development or at run tim& is
connect to the Terminology Server, perform a seriesegliests, and then taisconnect. This series
of events is known as@nnection session.
A request made of the Terminology Server by aniegiibn is specified in three parts: an operation,
its input, and its required output(s). An impottéeature of the Terminology Server is that of
mapping between different external representatjlamguages and coding schemes); as this is a
common operation, we provide an invisible, automeatiercion mechanism. This mechanism
performs the mapping to GRAIL concept entities fromdes on input, and allows the caller to specify
a series of required output formats which are fir@duced from the underlying concept entity which

Published in the Proceedings of IMIA WG6, Gendway 1994

is typically the result of a Terminology ServerlcalThis mechanism has the advantages of
ease-of-use for the application developers, amdinimising the number of requests; because the
Terminology Server is a networked resource, theeefixed overhead per call.

The input or output types for the Terminology Semay be any of the following forms:

» ‘References’ — e.g. pointers — to (elementary or complex) concept istit References can
be combined into a specification of any complexcamt entity.

» ‘Linguistic expressions’ which can be generateah (and potentially translated into) GRAIL
expressions, but which are not in general uniquemajor function of the Multilingual Module
is to provide a buffer between the intrinsic amitigof natural language and the unambiguous
formal representation in GRAIL of the CORE Model.

» ‘External expressions’ such as from coding amagsfication systems, database schemata, etc.
which can be mapped into or out of the CORE Mod&lapping expressions and coping with
the problems of mismatches, partial matches, affereinces in granularity is the task of the
Code Conversion Module.

In general the Terminology Server will accepts inplojects in any of these forms and likewise will
produce answers in any of these forms.
Where necessary, the Terminology Server will penfarternal ‘coercion’ on input arguments and
output results, by making calls of the individuaddules invisibly to the user. For example, an
application may have hold of an ICD code for Ul@erd may wish to use the knowledge in the
CORE model to produce a list of the possible reteships along which this may be refined.
Informally: "what can | say about ulcers to deseribem further?" The results are required to be
put up on a screen, so we need output in a ndéurgliage (say French for this example), but we also
require efficient handles for the results (seeifer@.3), so we can use them in subsequent requeests
the Terminology Server. The request, in this edampill have the following form:
Input: ICD531.9 an ICD Code
Operation: refiningRelationships a terminological operation
implemented by the Terminology Module
within the Terminology Server
OutputSpecification <asNaturalLanguage(french), an array of output specifications; this
asVolatileReference> says that the output is required both as
French natural language, and asa
volatile reference for usein future
requests
3.1.3. Reference to Concept Entities: Managing Pastence
One of the permitted input and output forms thatTlerminology Server supports are ‘references' to
concept entities. References can be of three forms

Volatile valid only during single application's connecti@ssion with a particular
Terminology Server. These references (or ‘harndies'the cheapest form of
reference, but have the most limited lifetime. yhee of fixed length.

Local local to a particular Terminology Server at a gaitar site and its extensions. They
are also of fixed length. Local identifiers arpitally used for communication
between applications that may connect to the sagan@ihology Server, or for local,
long-term, data storage within applications.

Global valid across all Terminology Servers containingpecsfic version of the CORE
Model. Global identifiers have the widest appliigh though are the most
expensive, and they are of variable length. Theyuged to communicate between
different, geographically distinct, Terminology Sers.

Applications may construct complex concept entki€&RAIL expressions - using any combination

of global, local, and volatile references. A ssmgtference may be thought of as an elementary
GRAIL expression.

The Terminology Server can generate a single Velatilocal reference from any GRAIL expression
which is sanctioned by the CORE Model. Howevesréhmay not be an elementary global
reference corresponding to a particular expressidinerefore, requests for global references may be
of variable length and are thus expressions rédktaer pointers.

Published in the Proceedings of IMIA WG6, Gendway 1994

3.2 Questions which the Terminology Server can angwm

3.2.1. What does this reference or expression mean?

The Terminology Server can be presented with anesspon (for example made up of concept entity
references) which may or may not correspond tooomaore legal concept entities sanctioned by
CORE Model. If sanctioned, a concept entity maynay not already have been generated by the
Concept Module. The first task of the Terminol&grver is to examine the expression, convert it
to a sanctioned GRAIL expression if possible, dahtsee if either a corresponding concept entity
exists, or if not to generate and classify the nencept entity required. Note however that the
external application is unaware of which of thestoas has been taken. The Terminology Server
can then answer questions such as:

* Is this a legal expression, and what is its s@siplorm (e.g. with any redundancies removed)?

» Ifitis legal, how is it classified— what morermgeral concepts subsume it? What more
specialised concept entities does it subsume?

* What is known about this concept entity concelptfeom the CORE Model? What other
extrinsic information has been said about this ephentity?

3.2.2. What can be said about this concept entity?
A major function of the Terminology Server is tdl sgplications what further can be sensibly said
about a concept entity — to support a user intertachelp clinicians enter the information; to asai
bibliography system refine a query; or to assisatral language system to disambiguate candidate
phrases. Correspondingly, much of the informaitiothe CORE Model is not about what is true but
about what can sensibly be said. Once concejitesngire generated and classified, the
Terminology Server can therefore answer questiook as:

* What statements can sensibly be made aboutdhisept entity? What are its sensible
modifiers and relations?
» How can this concept be specialised accordirgivien criteria? —e.g. anatomically,
functionally, according to clinical indications effects.
* What are the ‘sensible’ ways in which this setofcepts can be combined into a single larger
concept?
Answers to any of these questions may involve gdimgy further new entities. For example, the
CORE Model does not store information about evéralgnx of every finger explicitly, but it can
respond to questions such as the parts of thefdlefth finger” by generating entities representing
concepts such as the “first phalanx of the leftttodinger”, “proximal interphalangeal joint of theft
fourth finger”, “second phalanx of the left foufthger”, etc.
3.2.3. What are the nearest representations to thia some other representation?
Another major use of the Terminology Server isdowert between external representations including
both coding and classification systems and natarguages. (Although initially its ability to
convert from natural language will be limited). &€k conversion or translation is not always
possible because the corresponding concepts mdametrepresentations in the target system. The
Code Conversion and Multilingual modules are resita for providing applications with a variety
of strategies for coping with inexact matches. dogr, in many situations the best that can be done
is to provide the application with the information the potential matches and details about the
imperfections in the matching process. It is thprio the application program to decide how to deal
with this information according to its own partiaukequirements.
Conversion using the Terminology Server is alwayw@stage process — first map the expression
into the CORE Model and then map it back into Hrget external or linguistic representation. At
the same time, the Multilingual and Code Converdfmaules maintain extra information to enable
them to answer specific questions relating to #teraal representations. Combining and
encapsulating these techniques the Terminologyebean respond to questions such as:

» What are the external expressions for this canestfity in a particular external system? What
is the preferred term for this concept entity iatthystem?

» What are the natural language expressions fercthimcept in a particular language? What is the
preferred form for a particular ‘clinical linguistgroup’.

Published in the Proceedings of IMIA WG6, Gendway 1994

» Are these two concept entities derived from twitetent external representations the same? If
not, how do they differ? What information wouldvkao be added or removed from each to
make them the same?

» Find all of the expressions in a given exteregresentation which correspond to children of this
concept entity, i.e. all of the codes which this@ept entity subsumes. This is a particularly
important question for information retrieval. lloavs the Terminology Server to compensate
for the deficiencies in the organisation of extéowing systems. For example, forms of heart
disease are found in at least five different chapdé ICD-9.

3.2.4. Encapsulation and the transformation of terra

Different applications may require information t® éncapsulated in different forms. In general,
applications want to store the information whichytimanipulate locally and to encapsulate
information which they do not expect to need. Bfmre a surgical system might want to record the
approach, instruments, and method of anaesthgsaaately whereas a general practice system might
want to encapsulate these details into a single émda surgical procedure.

Furthermore, most systems use relational technoldggh is based on fixed length identifiers for
most fields. The variable length recursive struegifrom the CORE Model itself fit badly into
relational schemes. One of the functions of therl@ology Server is to encapsulate complex
expressions into fixed length references and tuigdeoalternative sets of such references reprexgnti
different degrees of encapsulationeg. a single reference for a surgical procedure fgerzeral
practice system or separate references for the pnagedure, approach, anaesthesia, and instruments
used for a surgical database.

One special case is that systems differ as to whmminalisation’ they wish to use to encapsulate
particular information — whether to record the Hrare of the femur” or the “femur which is
fractured”. Applications also vary as to whichvafious dualities they wish to regard as primary —
e.g. whether to record “the ulcer” or “the process lolevation”. The terminology server provides

a number of special purpose functions to deal thightechnical issues and can respond to requests
such as:

» Transform this concept entity into an alternatmggninalisation or an alternative form within one
of the recognised dualities.

» Provide a volatile, local or global reference tiois concept entity.

» Encapsulate these concept entities accordinggteem format for an application as a set of
references or a set of external expressions.

3.2.5. What other extrinsic information has been aached to this concept besides the
indefeasible terminological knowledge?

Strictly speaking, the CORE Model contains onlyaete conceptual knowledge which is
indefeasible and true ‘by definition’. Howevennajor function of the CORE model is to provide a
framework with which to organise other, more gehefarmation. Holding such information and
retrieving the most specific information in a certeategory available —e.g. concerning drug
interactions, clinical procedures or diagnostichods— is so useful that additional operations are
provided to support these functions directly. EBrare three primary operations:

» Find the most specific information in a givenegairy about a concept entity.

» Find all of the information in a certain categatyout a concept entity and all of its parents.

* Find all the children of a particular conceptitgrnguch that a particular piece of extrinsic

information holds.

3.3 Things the Terminology Server can be Told
One of GALEN’s major goals it to support local ex¢®ns and flexible development within an
overall coherent framework provided by the CORE Blod Local sites and applications must
therefore be able to add information to the Teriaigp Server in a number of different ways.
These functions are still under development asaim gxperience with using and developing the
Terminology Server, and the different types of klemlge it contains.
3.3.1. To extend the existing model
Local site may need to extend the model itselfttthéir needs in a number of different ways. The
goal is that many changes can be made locally withdor reference to the central management of

Published in the Proceedings of IMIA WG6, Gendway 1994

the CORE Model. Some of those changes may evéntiaincorporated into the global model and
distributed more widely; others may remain stridtigal.

» By giving new local names to existing or poteint@ncept entities. Adding local names does
not increase the range of things which can be egpreby the model, but it can make the model
much easier to use by simplifying what would othieeAbe complex expressions. New local
names can always be given without reference te¢héal co-ordinators.

» By adding new primitive concept entities. Thage of primitive concept entities may not
include things which are important locally. Foaexle, a surgical system might not include
names for all of the surgical instruments usedgrécular site. New detailed concept entities
in existing categories can normally be providedllycbut need to be notified to the
co-ordinators so that any potential conflicts wither users working in the same area can be
monitored and reconciled where necessary. Newrmoajegories require more careful control
and co-ordination.

» By adding new attributes and associated sancsorieat new things can be said. As with
adding new primitive concept entities, the rangattributes may not support sufficient detail for
local use. Detailed extension within the ovenahfiework can normally take place locally.
More global changes require central co-ordination.

» By adding new sanctioning statements so thatiegisittributes and concept entities can be used
in new ways. It is often the case that the sanstin the CORE model are too specific for local
use and may have to be extended. However, thadabht the sanctions need to be relaxed
often indicates misunderstandings concerning ttemded use of the model. Therefore, except
where sanction are being extended trivially to cavew primitives, changes to sanctions need to
be made with care and notified to the co-ordinators

» By adding new statements of conceptually necgdaats. Making a conceptually necessary
statement about a concept entity may cause thi#y embe classified in an additional way, or
even cause two entities which were previously mlistio coalesce into a single entity. As in the
previous examples, local changes which simply emedhe available detail can be made locally
but need to be notified to the central Co-ordinatdvlore drastic changes must be carefully
monitored. Any changes which cause two entitiesodesce need to be verified centrally.

3.3.2. To add to or modify the mappings to externalepresentations in the Code Conversion
module

Many of the changes to the Terminology Server me@dding to an existing external representation

or adding a complete new external representatidie status of these changes depends on the status

of the external representation. Addition of a ctatglocal external representation — a local coding

system or database schema is obviously a locaématChanges to the mapping to ICD or

SNOMED need to be made with great care and probabigate errors which should be notified

centrally.

3.3.3. To add to or modify the linguistic informaton in the Multilingual Module

The structure of concept entities maintained byGbhacept Module within the Terminology Server is

language-independent. The Multilingual Module naims the data and the functionality required to

map any concept entity into (potentially) any natdanguage. Local users may want to add to the

translations in the Multilingual Module or changstalls about the preferred use of language locally.

These changes can be made completely locally withidecting the other users of the Terminology

Server. However, major linguistic developments mayf much wider interest and should

probably be notified to the central co-ordinators.

3.3.4. To add or modify the additional extrinsic ifiormation attached to concept entities.

As discussed in Section 2.2, an important facihiy Terminology Server offers is to annotate the

conceptual model with extrinsic information. Therinology Server provides facilities for adding

such annotations, and a series of operations dcsfich annotations from any concept entity (e.g. on

sanctioned but never before seen) using the camalegiaissification maintained by the Concept

Module within the Terminology Server.

3.4 Global Operations on the Model

In addition to operations on individual conceptitezg and expressions, there are operations which

can be performed on the model as a whole. Norntlaélyoperations are performed either after
making changes to the model or centrally a path@fverall maintenance function for the CORE

Published in the Proceedings of IMIA WG6, Gendway 1994

Model. These functions are still under developnanbur experience with the Terminology Server,
and the amounts of knowledge held within it grow.

3.4.1. Coherence checking

Total checking of the CORE Model is probably congpiainally intractable. However, a wide range
of checks can be performed both on individual eph@ntities and on the model as a whole.
Global checking may only be practical at centrahpating sites with large computing resources.
3.4.2. Providing information on the editorial statts of items

The Terminology Server maintains information oneldéorial status of the model and on the
background and expected usage of the conceptesnititit. These are currently maintained as
special meta annotations and text comments; trgerahfacilities is growing rapidly as experience
with the model grows.

3.4.3. Managing updates

There is a great deal of ‘housekeeping’ to be domaanage the integration, distribution, and
acceptance of updates and the naotifications betwagaus users of the Terminology Server and the
CORE Model. The Terminology Server requires fumtdito manage these changes both centrally
and in each co-operating centre. The best meagsnisationally and technically, are under
vigorous investigation.

3.4.4. Local coding schemes

One of the important features of the Terminologgw8eis to be able to ‘compile out’ sections of the
conceptual model in a form recognisable to existipglications. This is equivalent to building a
‘local coding scheme’ dynamically, and makes thecfionality of the Terminology Server more
widely available. Whilst it is not possible to easidvantage of all the facilities of the Terminglog
Server by using such local coding schemes, it dwdse the knowledge available to a wider range of
applications. Furthermore any data collected usuwdh a 'local scheme' can always be referred back
to the Terminology Server with which it remains sisient, if additional analyses are required.

4. The Terminology Server Architecture

GALEN's approach is to divide the tasks and infatiorausually summarised under the heading of
‘terminology’ into several semi-independent piedesievelop well defined techniques for dealing
with each, and then to present all of the senaaesessing these tasks through a uniform interace
the Terminology Server’s Applications Programmintgtface. The overall architecture is shown in
two different levels of detail in figures 1 and 2.

4.1 High Level Architecture

Applications

requests from applicationsj

network

replies from
Terminology Server

Terminology Server

Figure 1: The high level architecture of the Terohgy Server.
The Terminology Server provides a networked resotoc applications.

The Terminology Server provides a uniform applmagi programming interface (API) to its modules.
It provides a common query language so that agics can transparently make complex requests

Published in the Proceedings of IMIA WG6, Gendway 1994

involving more than one module , and provides &uam means of specifying the forms of input
supplied and output requested.

The Terminology Server’s applications programmimgiface is designed in such a way that new
modules can easily use it as a means to exportdbmiices to the network. This is appropriate
where a module’s function is so closely tied todh®er services of the Terminology Server that
applications developers find it convenient to hthesm bundled together.

4.2 Internal Architecture of the Terminology Server

Figure 2 presents an overview of the internal &echire of the Terminology Server. Externally, the
Terminology Server presents a modularised vievewhinology to external applications. This
pattern of modularisation is echoed in its intear@hitecture. The overall task of managing
terminology has been modularised into differenteatp- conceptual, linguistic, coding, and extadnsi
- which are implemented by separate modules witheriTerminology Server. The Terminology
Server combines these modules, adds referenceoancian mechanisms, and exports individual
module services, via the API, to applications. Tkeminology Server's reference management
makes it easy for external applications to refeeeamtd store concept entities, for example as part o
patient record system. The Terminology Serversaon mechanism provides efficient ways of
combining multiple module services and relievesliapfions of needing to know how specific
requests are handled.

A flexible interface has been developed so thaviddal modules may ‘export' their services, via th
API, to external applications, so additional funoality can be made available very quickly.
Maintaining modularity within the Terminology Sery@&ovides the additional advantage in software
engineering terms of allowing different developmerdups to proceed with developments and
enhancements in which they are expert, with théidence that integration into the Terminology
Server is straightforward.

network connection

API: applications programming interface

Coercion Management Reference Management

Module Interface

| Extrinsics 882\e/ersio s Concept Multilingua
-4 Module =2 Module Module Module
: - code store .- frmmmmiay o &7 el ed

Essential Modules

Additional Modules

10

Published in the Proceedings of IMIA WG6, Gendway 1994

Figure 2: An overview of the internal architectofehe Terminology Server. The
Coercion Management Layer performs coercion orgagst's inputs and
outputs, and provides facilities for specifying hswch coercion should take
place. The Reference Management layer mediatesbertthe external
references by which applications may refer to cpheetities, and the
internal representation of concept entities whechhanaged by the Concep
Module.

The central task of concept modelling is addressetthe ‘Concept Module’ which interprets the
‘Concept Reference’ (CORE) Model The CORE Model serves as an interlingua amangsiical
nomenclatures, vocabularies, and the terminologispécts of database schemata. When
performing conversions all terms from external ogdsystems, nomenclatures, database schemata or
other external representations are first convertedthe CORE model and classified. Any other
processing requested is performed on the CORE Megebsentation. If a response is required in a
form other than an expression from CORE Modelfitdken the result is converted into the required
output formsi(e. ‘projected’ onto the output schemata). A bassuagtion is that the CORE

model will be at least as detailed as the uniothefsupported external representations. The goal i
that translation amongst n external representatemsires maintaining only mappings to and from
the CORE model rather thaun-1)/2 2-way mappings between all possible pairs of repedions.
The Multilingual Module provides lexicons and graatioal information for expressing, and
eventually understanding, phrases in natural lagegia The goal is that external representations
need not supply their own translations to varioasiral languages but can depend on the
Multilingual module to translate the CORE Model arpion of their representation. (It is also,
however, necessary to support official translagbparticular coding schemes via individual
mappings from external representations to theiciafftranslations.) The concept entities within
the Concept Module are language-independent; tHelidgual Module maintains and presents
linguistic interpretations of these concept ergitie A minimally functional Terminology Server must
contain at least a Concept Module, and a Multilaigdodule to provide a linguistic interpretation.
Further functionality is added, as described, lyirgla Code Conversion Module and Extrinsic
Information Module.

The Code Conversion Module maintains the extemm@mlasentations themselves, along with special
information related to their structure and browsmg. information on the cross referencing in
SNOMED or the dagger-asterisk mechanism and exeiasn ICD-9/10. The Code Conversion
Module also provides the functionality concernethwesolving ambiguities and conflicts when there
is not an immediate one-to-one correspondence ket GALEN CORE Model and the target
external representation or when there — for examylen the expansion of a term from one
external coding system has no direct representatiardifferent external coding system.

The Extrinsic Information Module provides a reposytin which applications or sites can store
detailed information about the clinical criteria fesing concepts in the Terminology Server. These
definitions are ‘hung onto’ the classification stiwre of the CORE Model but are not part of it.
Different clinical linguistic groups have differectiteria for diagnosing diseases such as rheunhatoi
arthritis or schizophrenia. The concept modebisintended to be a diagnostic decision support
system, much less a normative model of care foofgeir However, one of the expected uses of the
Terminology Server is the support of applicatidmest twish to test or enforce such conventions
locally.

5. The CORE Model: Requirements for Re-use — avoidg application specific
decisions

Much of the success of the Terminology Server delbend on the adequacy of the CORE Model and

the formalism in which it is represented, the GRAKlernel. The GRAIL Kernel is described in

detail elsewhere [6, 18, 19], but two considersim its design should be re-iterated.

» The CORE Model aims at application-independemzkra-use. This means that the

information in the CORE Model held in the TermingydServer will usually be greater and more
detailed than needed by any single client appbicati Client applications must be able to

—F

2 Sometimes known in early documents as the ‘TerlogyoEngine’ and ‘COding REference’ model, respesti.

11

Published in the Proceedings of IMIA WG6, Gendway 1994

address the Terminology Server in different waysr@jpriate to their own situation. Wherever
possible, users should be protected from detaildbas not affect them.

» The Terminology Server does not provide a cotegleasoning system. Applications are
expected to provide additional inference or othrecgssing capabilities. What is provided is a
service for classifying and harmonising the coneeid terminology used.

Making the CORE Model application independent meamsding application specific decisions.
This near tautology leads to an analysis of whppdi@ation-specific decisions occur in knowledge
representation systems. That analysis leads tédatyres of The GRAIL Kernel:

» Constructs in the language which promote cleamdgeneous taxonomies which are
recombined through composition and generationudio constructs to co-ordinate part-whole
relations with subsumption, plus a modelling styléch exploits this constructs.

» A view of the category-individual (class-instapdestinction which avoids arbitrary choices.
Choices concerning what level of detail should @tute an ‘instance’ such as those described
graphically by Brachman in [20] are avoided bynietihg individuals only to concrete instances
in the real world and their properties. In thispect it is closely analogous to Sowa’s treatment
of types (corresponding to GRAIL categories) asddanabstractions over individuals and hence
fundamentally different from them. GRAIL model®tievel of specification’ required by
individual applications as explicit ‘external’ knatdge about those applications.

» Support for generation of implied concept entitihich means only that the basic model
(roughly equivalent to the ‘basis’ in Conceptuabfins [21]) be represented explicitly. Other
concept entities are generated as needed. Tbigsalhe Terminology Server to behave as if it
contained an indefinitely large number of conceytde physically representing only a compact
model.

» Features which facilitate alternative encapsofetiand which bridge the different levels of detail
required by different applications.

* Recognition that the model can never be compéaid,that it therefore functions in an open
rather than a closed world with corresponding aoiess and restrictions on the formalism.

* Restrictions on the range of constructs suppdaédose deemed ‘terminological’.

6. Discussion

6.1 A Terminology Service rather than a Terminology

The idea of a “Terminology Server” represents a nawy to view the role of terminology in
information systems. Previously, terminologieséneen static and used only during development
or ‘compile time’. A terminology was something whicould be written down or at least stored in a
straight forward database. Any manipulation oftdéreninology was left to individual applications.
SNOMED-III, the READ Codes and ICD-9 all provideeodegree or another of prescriptive advice
about how the coding system is to be used, butdheylefined in terms of the structure rather than
the functions performed. In contrast a terminoleggver deliverserminological services, that

provide high level functionality to applications.

Used in this way we believe that the ‘terminologgh become a potent integrating force helping to
mediate between different systems and differenli@ins, providing a consistent linguistic seevic
for many different applications. The server alsovjles a way of encapsulating one aspect of the
variability and complexity of clinical data in fosxmore palatable to conventional information
services.

The idea of a terminology service rather than miteology has several further ramifications.

6.1.1. Separation of responsibility and limitations

The idea of a Terminology Server embodies the sdjoarof responsibility between the terminology
or concept-modelling functions and other functionapplications. Up to a point, this separation
reflects current practice — coding and classifmasystems are developed separately from the
medical records and hospital information systemshich they are used. However, this is a purely
static separation and the line between the appicaind the terminology may be blurred with many
values and functions being handled procedurallfiwithe application.

Providing a separate Terminology Server requirasttie nature of that service be well defined.
Potential client applications must know what thay end cannot ask of the Server. This requires
that the limitations of what is considered ‘termiogcal’ must be carefully defined. There is

12

Published in the Proceedings of IMIA WG6, Gendway 1994

always a tendency to increase the bounds of alpédogy, pushing it to the limits of what it can do
rather than establishing what it can do best. GAltas attempted to be rigorous in limiting the
Terminology Server to a set of functions which iweoindefeasible reasoning about the ‘intrinsic’
conceptual characteristics of concepts. Whila# proved convenient to provide limited facilities
to record other ‘extrinsic’ characteristics whigdpéications wish to organise using the CORE Model
hierarchies, the Terminology Server performs nerice with such extrinsic information. There is
a strong tradition for this division going backBoachman and Levesque’s KRYPTON [22].

6.1.2. Mediation, Re-use and Knowledge Sharing

The GALEN Terminology Server is an important comgnin a strategy for mediation between
heterogeneous applications. It is not a completdiation service — some differences may require
extensive computation for conversi@g. between different numerical scales and co-ordinate
systems. However, a large class of problems inatiad between medical information sources
concerns the semantic content of those sources.

Because of the ability to transform between difféferms and re-encapsulate structures in different
ways, GALEN'’s approach to knowledge sharing andse+equires less rigid adherence to a single
standard than fixed coding systems such as ICD[28]0the Read Codes [3] , or even SNOMED Il
[2]. Alternative representations which are appaiprto individual applications can be used.
Conversion can occur either dynamically at run tonéhe system can be used during development to
assist in static translations. On the other hemthose willing to make that commitment during
development, the CORE model through the Termino®enver is intended to provide a source of
concepts which will make the independent develogroénoherent systems much easier.

Of other knowledge sharing efforts, the DARPA Knetlde Sharing Effort [11, 13, 24] focuses
primarily on translation between ontologies andgt®vision of standard ontologies during
development. It normally requires a minimal conmant in advance to a single shared ontology
and provides no support at run-time. The GALENniablogy Server is perhaps more analogous
to some applications envisaged for Cyc [25-27] imol Cyc would provide a general substructure
and services to many applications. However, GALENORE Model is strictly limited to medical
conceptual knowledge, whereas Cyc’s knowledge bagiees to general common sense knowledge
of the world.

6.1.3. Distributed development

The ability to separate running applications acsiss offers the potential to distribute developme
effort across multiple centres. Distributed depetent remains a long term goal to be pursued.
However, achieving successful distributed develapgmequires implementing sophisticated
strategies for notification, locking, and versioaintenance which are still only in the planning
stages.

6.1.4. Architecture and Extensions

One of the successes of the project has been Waéogenent of an architecture into which new
modules and services can be easily incorporatedLEBI is experimental, and it is premature to
determine which services will be best packagedttmge It is important to modularity that the
developers resist the temptation to extend thessarithout limit. On the other hand, when services
are encountered which are tightly coupled to thenitgological functions they can be incorporated as
needed.

6.2 Evaluation

Ultimately, the Terminology Server will be judged lhow well it supports applications,. There are
at least two broad areas for evaluation:

» Does the terminology server and model suppoividdal applications effectively?

» Can the same terminology server and model sugeedral communicating applications?
These questions can be further separated into teupg:

* Those which concern the idea of a Terminologyw&eand its functionper se;

* Those which concern the CORE Model and the tasliof the GRAIL Kernel modelling

language.

This paper has concentrated on the functions of énminology Serveper sethe key issue for which
must be whether the separation and architecturecemesnient for the development of applications,
given an effective CORE Model.

13

Published in the Proceedings of IMIA WG6, Gendway 1994

The GALEN project itself contains applications ésttthe clinical effectiveness of the combined
Terminology Server and CORE Model, including claliaser interfaces, medical records and
knowledge based systems. Further collaborativeldpments are planned. Initial results are
promising, but definitive results will have to awhirther experience. (There are also a range of
procedures in place to evaluate the CORE Moddf.jxse

6.3 Current Status

GALEN is a long term project to demonstrate thesitgitity of the approach both to the architecture

of the terminology engine and to the techniquesooicept modelling. Current progress is

promising but does not yet constitute definitivedence of that feasibility. As of June 1994, miiti
versions of the Terminology Server have been implged and applications for clinical user
interfaces, medical records and knowledge baseddrsgsare now being developed. Portions of the
CORE Model have been compiled for gastro-intestisgases, arthroscopy proceedings and findings,
and urinary tract and respiratory tract infectioné general framework for a model of anatomy has
been developed and the broad shallow model of emaitonearing completion. The concept of a
client-server architecture has been tested, dmasibeen shown that applications and the server can
interact successfully running on different machili@sed across either local area networks or across
the Internet.

7. References

1. Lindberg D, Humphreys B, McCray A. The Unifieceiical Language System. In: van Bemmel J,
ed. 1993 Yearbook of Medical Informatics. Amstard Intermational Medical Informatics
Association, 1993: 41-53.

Coété R, Rothwell D. SNOMED-3.Chicago: CollegeAnfierican Pathologists, 1993

3. Read J. The Read Clinical Classification. InNHS Centre for Coding and Classification,
Loughborough, UK, 1993:

4. Evans DA, Cimino J, Hersh WR, Huff SM, Bell DBe Canon Group. Position Statement:
Towards a Medical Concept Representation Langulagenal of the American Medical
Informatics Association 1994;1 (in press).

5. Cimino JC, Hripscak G, Johnson S. Knowledge-thagproaches to the maintenance of a large
controlled medical terminologyournal of the American Medical Informatics Association
1994;1(1):35-50.

6. Rector A, Nowlan W, Glowinski A. Goals for Copté&epresentation in the GALEN project.
17th Annual Symposium on Computer Applications iadital Care (SCAMC-93).

McGraw Hill, 1993: .

7. Rector A, Nowlan W, Kay S. Conceptual Knowledgke Core of Medical Information
Systems. In: Lun K, Degoulet P, Pierre T, Rienl@ff{ed).Seventh World Congress on Medical
Informatics, MEDINFO-92. Geneva: North-Holland Publishek891: 1420-1426.

8. Rector A. Marking up is not enoug¥iethods of Information in Medicine 1993;32(4):272-273.

9. Lenat DB, Guha RV, Pittman K, Pratt D, ShephdrcCyc: toward programms with common
senseCommunications of the ACM 1990;33(8):30-49.

10. Lenat RGaDB. Re: CycLing paper reviewsdificial Intelligence 1993;61(1):149-74.

11. McGuire JG, Kuokka D, Weber JC, Tenenbaum JMp& TR, Olsen GR. SHADE: Technology
for knowledge based collaborative engineerioginral of Concurrent Engineering: Applications
and Research (CERA) 1993;1(2).

12. Neches R, Fikes R, Finin T, et al. Enablinghifedogy for Knowledge Sharing\l Magazine
1991;(Fall 1991):37-54.

13. Patil RS, Fikes RE, Patel-Schneider PF, &tsd. DARPA Knowledge Sharing Effort: Progress
Report. Principles of Knowledge RepresentationRedsoning, Third International Confrence.
Cambridge MA: Morgan Kaufman, 1992: .

14. Musen M. Dimensions of knowledge sharing andeeComputers and Biomedical Research
1992;25:435-467.

15. Walther E, Eriksson H, Musen MA. Plug-and-Plagnstruction of task-specific expert-system

shells using sharable context ontologies. AAAI Vtrdp on Knowledge Repreentation Aspects

of Knowledge Acquision. San Jose CA:, 1991-198.

n

14

16

17.

18.

19.

20.

21.

22.

23.

24,

25.

26
27

Published in the Proceedings of IMIA WG6, Gendway 1994

. Schreiber A, van Heijst G, Lanzola G, StefaféliIKnowledge organisation in medical KBS
construction. In: Andreassen S, Engelbrecht R, Wiged). Fourth Conference on Artificial
Intelligence in Medicine Europe. Munich: 0885, 1993: 394-405.

Masarie Jr F, Miller R, Bouhaddou O, Giuse Ngridér H. An interlingua for electronic
interchange of medical information: using framesniap between clinical vocabularies.
Computersin Biomedical Research 1991;24(4):379-400.

Rector A, Nowlan W. The GALEN Representatiod &rtegration Language (GRAIL) Kernel,
Version 1. In: The GALEN Consortium for the ECMAProgramme. (Available from Medical
Informatics Group, University of Manchester), 1993:

Rector AL, Nowlan WA Reusable Application Independent Model of Medical
Terminology: GALEN’s GRAIL. KR-94. Berlin: Morgan Kaufmann, 1994: (in press).
Brachnan RJ, McGuinness DL, Patel-Schneider PF, ResmigkBorgida A. Living with Classic:
When and how to use a KL-ONE-like language. In: &dwed. Principles of Semantic

Networks: Explorations in the representation ofwleslge. San Mateo, CA: Morgan Kaufmann,
1991: 401-456.

Sowa J. Conceptual Structures: Knowledge Reptason in Mind and Machine.New York:
John Wiley & Sons, 1985

Brachman R, Fikes R, Levesque H. An essengtaiidh reasoning system; knowledge and symbol
level accounts of KRYPTON. International Joint Gengince on Artificial Intelligence (IJCAI-85).
Morgan Kaufman, 1985: 532-5309.

World Health Organisation. International Clasifion of Diseases.Geneva: World Health
Organisation, 1989

Fikes R, Cutkosky M, Gruber T, Baalen jV. Knedde Sharing Technology -- Project Overview.
In: Stanford University, Knowledge Sharing Laborgf 1991:

Lenat DB, Guha RV. Building Large Knowledge-BasSystems: Representation and inferenc in
the Cyc Project.Reading, MA: Addison-Wesley, 19823

. Lenat D, Guha R. Ideas for applying Cyc. In: C®™ 1991
. Guha R, Lenat D. Cyc: a midterm repéitmagazine 1990;11(3):32-59.

15

